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Navier-Stokes Equations (NSE)

∂tv(t, x)−∆v + (v,∇)v +∇p(t, x) = 0,

divv = 0,

v(t, . . . , xi, . . .) = v(t, . . . , xi+2π, . . .), i = 1,2,3,

v(t, x)|t=0 = v0(x)

Here v(t, x) = (v1, v2, v3) is a �uid velocity,

p(t, x) is a pressure.

Energy inequality:∫
T3
|v(t, x)|2dx+ 2

∫ t

0

∫
T3
|∇xv(τ, x)|2dxdτ ≤

∫
T3
|v0(x)|2dx

Image of nonlinear operator (v,∇)v at each

point v ∈ Σ ≡ {u ∈ L2 : ‖u‖L2
= 1} is tangent

to the sphere Σ, i.e. v ⊥L2
(v,∇)v

3



Helmholtz Equations

Curl of velocity

ω(t, x) = curl v(t, x) =

= (∂x2v3−∂x3v2, ∂x3v1−∂x1v3, ∂x1v2−∂x2v1)

Well-known formulas

(v,∇)v = ω × v +∇
|v|2

2
,

curl (ω×v) = (v,∇)ω−(ω,∇)v, if div v = divω = 0

System of equations for curl

∂tω(t, x)−∆ω + (v,∇)ω − (ω,∇)v = 0

ω(t, x)|t=0 = ω0(x)

where ω0 = curlv0
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System of normal type and its derivation

Function spaces

V m = V m(T3) =

= {v(x) ∈ (Hm(T3))3 : div v = 0,
∫
T3
v(x)dx = 0}

where Hm(T3) - is the Sobolev space. Using

decomposition in Fourier series

v(x) =
∑
k∈Z3

v̂(k)eix·k, v̂(k) =
∫
T3

v(x)

(2π)−3
e−ix·kdx,

where x · k =
∑3
j=1 xjkj, k = (k1, k2, k3) and

the formula curl curl v = −∆v, when div v =

0, we get

curl−1ω(x) = i
∑

k∈Z3\{0}

k × ω̂(k)

|k|2
eix·k

Therefore operator

curl : V 1 −→ V 0

realizes isomorphism of the spaces.
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Nonlinear term in Helmholtz equations

B(ω) = (v,∇)ω − (ω,∇)v

The following formula holds

(B(ω), ω)V 0 = −
∫
T3

3∑
j,k=1

ωj∂jvkωkdx 6= 0

and therefore

B(ω) = Bn(ω) +Bτ(ω),

where Bn(ω) is the component orthogonal to

the sphere

Σω = {u ∈ V 0 : ‖u‖V 0 = ‖ω‖V 0}

at the point ω, and the vector Bτ(ω) is tangent

to Σω at ω. It is clear that Bn(ω) = Φ(ω)ω

where Φ is unknown functional, that is determined

from equation∫
T3

Φ(ω)ω(x)·ω(x)dx =
∫
T3

(ω(x),∇)v(x)·ω(x)dx

and has the form
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Φ(ω) =

∫
T3(ω(x),∇)curl −1ω(x) · ω(x)dx∫

T3 |ω(x)|2dx
, ω 6= 0,

Φ(ω) = 0, ω ≡ 0

Normal parabolic system (NPS)

∂tω(t, x)−∆ω −Φ(ω)ω = 0, divω = 0 (1)

ω(t, x)|t=0 = ω0(x) (2)

Exact formula for NPS solution

Theorem 1. Let S(t, x, y0) - be solving operator
for the Stokes system with periodic boundary

conditions:

∂ty −∆y = 0, div y = 0, y|t=0 = y0, (3)

i.e. S(t, x, y0) = y(t, x). (We assume that div y0 =
0). Then solution of the problem (1),(2) has

the form

ω(t, x;ω0) =
S(t, x;ω0)

1−
∫ t
0 Φ(S(τ, x;ω0))dτ

(4)
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Unique solvability of NPS and continuity

of solutions on initial conditions

Lemma 1. ∃c > 0, ∀u ∈ V 3/2 Φ(u) ≤ c‖u‖3/2

Lemma 2. ∀β < 1/2 ∃c1 > 0 ∀y0 ∈ V −β(T3),∫ t

0
Φ(S(t, ·, y0))dt ≤ c1‖y0‖−β

Let QT = (0, T ) × T3, T > 0 or T = ∞. The
space of solutions for NPS:

V 1,2(−1)(QT ) = L2(0, T ;V 1) ∩H1(0, T ;V −1)

Moreover, we look for solutions ω(t, x;ω0) satisfying

Condition 1. If initial condition ω0 ∈ V 0\{0}
and solution ω(t, x;ω0) ∈ V 1,2(−1)(QT ) then

ω(t, ·, ω0) 6= 0 ∀t ∈ [0, T ]

Theorem 2. For each ω0 ∈ V 0 there exists

T > 0 such that there exists unique solution

ω(t, x;ω0) ∈ V 1,2(−1)(QT ) of the problem (1),(2)

satisfying Condition 1.
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Theorem 3. The solution ω(t, x;ω0) ∈ V 1,2(−1)(QT )

of the problem (1),(2) depends continuously

on initial condition ω0 ∈ V 0.

On kernel of the functional Φ(S(t;u))

De�ne the cone

KΦ = {u ∈ V 0 : Φ(S(t;u)) ≡ 0 ∀t ∈ R+}

If u ∈ KΦ then λu ∈ KΦ ∀λ ∈ R

Let

L = {z ∈ V 0 : z(x) =
∑
k∈U

ẑ(k)eik·x, ẑ(−k) = ẑ(k)},

where

U = {k = (k1, k2, k3) ∈ Z3\{0} :
3∑

j=1

kj is odd}

Lemma 3. L ⊂ KΦ, KΦ \ L 6= ∅
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Structure of dynamical �ow for NPS

V 0(T3) ≡ V 0 is phase space for problem (1),(2).

De�nition 1. The set M− ⊂ V 0 of ω0, such

that for solution ω(t, x;ω0) of problem (1),(2)

satis�es inequality

‖ω(t, ·;ω0)‖0 ≤ α‖ω0‖0e−t/2 ∀t > 0 (∗)

is called the set of stability. Here α > 1 is a

�xed number depending on ‖ω0‖0.

M−(α) = {ω0 ∈M−; ω(t, ·;ω0) satis�es (*)}

where α ≥ 1 is �xed. Then M− = ∪α≥1M−(α)

If for ω0 ∈ V 0 the bound

sup
t∈R+

∫ t

0
Φ(S(τ, ·;ω0))dτ ≤

α− 1

α

holds then ω0 ∈M−(α).
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De�nition 2. The set M+ ⊂ V 0 of ω0, such

that the corresponding solution ω(t, x;ω0) exists

only on a �nite time interval t ∈ (0, t0), and

blows up at t = t0 is called the set of explosions.

The formula holds:

M+ = {ω0 ∈ V 0 : ∃t0 > 0
∫ t0

0
Φ(S(τ, ·;ω0))dτ = 1}

De�nition 3. The set Mg ⊂ V 0 of ω0, such

that the corresponding solution ω(t, x;ω0) exists

for time t ∈ R+, and ‖ω(t, x;ω0)‖0 → ∞ as

t→∞ is called the set of growing.

Lemma 4. Sets M−,M+,Mg are not empty,

and M− ∪M+ ∪Mg = V 0
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Some subsets of unit sphere from V 0

Unit sphere: Σ = {v ∈ V 0 : ‖v‖0 = 1}.
Subsets

A−(t) = {v ∈ Σ :
∫ t

0
Φ(S(τ, v))dτ ≤ 0},

A0(t) = {v ∈ Σ :
∫ t

0
Φ(S(τ, v))dτ = 0}

A− = ∩t≥0A−(t), A0 = ∩t≥0A0(t)

B+ = Σ \A− ≡

≡ {v ∈ Σ : ∃t0 > 0
∫ t0

0
Φ(S(τ, v))dτ > 0},

∂B+ = {v ∈ Σ : ∀t > 0
∫ t

0
Φ(S(τ, v))dτ ≤ 0

è ∃t0 > 0 :
∫ t0

0
Φ(S(τ, v))dτ = 0}
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On a structure of phase space

Important function on sphere Σ:

B+ 3 v → b(v) = max
t≥0

∫ t

0
Φ(S(τ, v))dτ (5)

Evidently, b(v) > 0 è b(v)→ 0 as v → ∂B+.

Let de�ne the map Γ(v):

B+ 3 v → Γ(v) =
1

b(v)
v ∈ V 0 (6)

It is clear that ‖Γ(v)‖0 →∞ as v → ∂B+.

The set Γ(B+) divides V 0 on two parts:

V 0
− = {v ∈ V 0 : [0, v] ∩ Γ(B+) = ∅},

V 0
+ = {v ∈ V 0 : [0, v) ∩ Γ(B+) 6= ∅}

Let B+ = B+,f ∪B+,∞ where

B+,f = {v ∈ B+ : max in (5) achives at t <∞}

B+,∞ = {v ∈ B+ : max in (5) does not achive at

t <∞}

Theorem 4.M− = V 0
− , M+ = V 0

+∪B+,f , Mg =
B+,∞
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Burgers equation

∂ty(t, x)− ∂xxy − ∂xy2 = 0, x ∈ (−π, π), (7)

y(t, x+ 2π) = y(t, x), y|t=0 = y0(x), (8)

considered in phase space

Y 1 = {y0 ∈ H1(−π, π) :
∫ π

−π
y0(x)dx = 0},

where ‖y‖Y 1 = ‖yx‖L2
.

Nonlinearity of normal type

Di�erentiation (7) on x yields

∂tv − ∂xxv −B(y) = 0, B(y) = 2v2 + 2yvx

where v = ∂xy. Let us decompose

B(y) = Bn(y) +Bτ(y),

where Bn(y) ⊥ Σ(Y 1), Bτ(y) touches Σ(Y 1)
and Σ(Y 1) = {y ∈ Y 1 : ‖y‖Y 1 = 1} Then

Bn(y) = Φ(yx)yx, Φ(v) =

∫ π
−π v

3dx∫ π
−π v2dx
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Equation with normal nonlinearity

∂tv − ∂xxv −Φ(v)v = 0, (9)

v(t, x+ 2π) = v(t, x), v|t=0 = v0(x) (10)

Phase space:

L0
2 = {v ∈ L2(−π, π) :

∫ π

−π
v(x)dx = 0}

De�nition 1.The set M− ⊂ L0
2, of all initial

conditions v0 for problem (9),(10) whose solutions

satisfy

‖v(v, ·)‖2L2
≤ αe−t

with a certain α = α(v0) > 0 is called set of

stability.

De�nition 2.The set M+ ⊂ L0
2 of all initial

conditions v0 for problem (9),(10) whose solutions

blow up during �nite time is called the set of

explosions.

De�nition 3.The set Mg = L0
2 \ (M− ∪M+)

is called the set of grouth.
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Denote S(t, x, v0) = w(t, x) where w is the

solution of the problem

∂tw − ∂xxw = 0,

w(t, x+ 2π) = w(t, x), w|t=0 = v0(x)

Formula for solution of (9),(10):

v(t, x, v0) =
S(t, x, v0)

1−
∫ t
0 Φ(S(τ, ·, v0))dτ

(11)

Lemma 1. M− 6= ∅, M+ 6= ∅, Mg 6= ∅.

Lemma 2. For initial conditions v0 ∈Mg the

solution v(t, x, v0) of problem (9),(10) with

normal nonlinearity satis�es

‖v(t, ·, v0)‖L2
→∞ as t→∞
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Feedback stabilization of equation with

normal nonlinearity.

We consider stabilization problem

∂tv−∂xxv−Φ(v)v = 0, v|t=0 = v0(x)+u0(x)

on circumference, where v0(x) is a given function

and u0(x) is a starting control supported on a

segment [−ρ, ρ] ⊂ [−π, π] with arbitrary prescribed

ρ > 0.

We look for universal stabilizing control

u0(x) = λu(x), λ ∈ R (12)

with

u(x) = ξp(x)(cos 2px+ cos 4px) (13)

where p is a natural number satisfying π/(2p) ≤
ρ, and ξp(x) is characteristic function of segment

[−π/(2p), π/(2p)].

Theorem 5. Given v0 ∈ M+ ∪Mg, ρ > 0 is

small and �xed. There exists u0 ∈ L0
2 of the

form (12), (13) such that v0 + u0 ∈M−.
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The main step of proof consists of establishing

inequality

∫ π

−π
S3(t, x, u)dx ≥ βe−6t (14)

with a positive β where S(t, x, u) is the solution

of heat equation with periodic boundary condition

and initial condition u(x) de�ned in (13).

Using (14) it is possible to prove that

∀v0 ∈M+ ∪Mg ∃α > 1, λ̂� 1 ∀|λ| ≥ λ0

1−
∫ t

0
Φ(S(t, x, v0 + λu)dx ≥ 1/α (15)

In virtue of explicit formula (11) for solution

of NPE (15) implies that

‖v(t, ·; v0 + λu)‖2L2
≤ αe−t

This proves Theorem 5.
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Remark 1 Using result obtained in the Theorem

5 one can prove non local stabilization of

di�erentiated Burgers equation:

∂tv−∂xxv−Φ(v)v = Bτ(y) ≡ 2v2+2yvx−Φ(v)v

We apply starting control as for Bτ(v) = 0:

v|t=0 = v0(x) + λ0u(x)

with λ0 = λ. If ∃t1 > 0 such that v(t1, ·) ∈
Mg ∪M+ we apply starting control again:

v|t=t1 = v(t1, x) + λ1u(x)

with a proper λ1 (|λ1| ≤ |λ|). In fact we get

stabilization of di�erentiated Burgers equations

by feedback impulse control:

∂tv−∂xxv−Φ(v)v = Bτ(v)+
N∑
j=0

λju(x)δ(t−tj),

v|t=0 = v0(x)

where t0 = 0, λj are chosen satisfying |λj| ≤
|λ0| and tj are de�ned by the rule indicated

above.
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Remark 2 In the case of local feedback stabili-

zation problem it is well-known connection

between starting, impulse, an distributed cont-

rol that are concentrated in a space sub domain,

i.e. it is known how to construct impulse

control with help of starting one, and how to

transform impulse control to the distributed

one. (see, for instance,A.V.Fursikov, A.V.Gor-

shkov. Certain questions of feedback stabilization

for Navier-Stokes equations.- Evolution Equations

and Control Theory, v.1(1), 2012, p.109-140)

Similar results can be obtained in the case of

nonlocal stabilization for NPS. Hence Theorem

5 implies possibility of nonlocal stabilization

for NPS by impulse and by distributed feedback

controls.

Taking into account Remark 1 this opens

opportunity to construct nonlocal stabilization

for equations of Navier-Stokes type by impulse

and by distributed feedback controls.
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Thank you

for attention
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