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Intra ion q
ntroductior General setting

Kolmogo ntropy measure of compa

Scalar conservation laws

Consider a scalar conservation law
O 4 0xf(u) = 0, X €R, (1)

where
@ u = u(t, x) is the state variable
@ the flux f = f(u) is (uniformly) strictly convex

f'(uy>c>0 VueR.
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tropy mea

Entropy weak solutions

Distributional weak solution of (1)

//[uatgo +H(U)dxp] =0 Vi € CL(]0, +o0[xR). @
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Intra ion q
ntroductior General setting

Kolmogo entropy measure of compa

Entropy weak solutions

Distributional weak solution of (1)

//[uatap +H(U)dxp] =0 Vi € CL(]0, +o0[xR). @
Lax stability condition for admissibility

u(t,x—=) > u(t,x+) foraet>0, VxeR. (3)
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Intra ion q
ntroductior General setting

Kolmogorov entropy measure of compactness

Entropy weak solutions

Distributional weak solution of (1)

//[uatap +H(U)dxp] =0 Vi € CL(]0, +o0[xR). @
Lax stability condition for admissibility
u(t,x—=) > u(t,x+) foraet>0, VxeR. (3)

uis an entropy admissible weak solution of (1) if u satisfies (2) and (3).
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Introduction General setting

Kolmogorov entropy mea

Semigroup (S;)

>0
The scalar conservation law (1) generates an L'-contractive semigroup
St L'(R) — L'(R), t>0,

which associates to every given initial data uy € L'(R) N L*°(R), the unique
entropy admissible weak solution u(t, x) of (1), with initial datum u(0,-) = up

Si(w) = u(t,).
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Intra ion q
ntroductior General setting

Kolmogorov entropy measure of compactness

Semigroup (S;)

t>0

The scalar conservation law (1) generates an L'-contractive semigroup
St L'(R) — L'(R), t>0,

which associates to every given initial data uy € L'(R) N L*°(R), the unique
entropy admissible weak solution u(t, x) of (1), with initial datum u(0,-) = up

Si(w) = u(t,).

Lax P. D., CPAM (1954)

St L'(R) — L} (R) is a compact operator for every t > 0
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Kolmogorov entropy measure of compactness

Semigroup (S;)

t>0

The scalar conservation law (1) generates an L'-contractive semigroup
St L'(R) — L'(R), t>0,

which associates to every given initial data uy € L'(R) N L*°(R), the unique
entropy admissible weak solution u(t, x) of (1), with initial datum u(0,-) = up

Si(w) = u(t,).

Lax P. D., CPAM (1954)

St L'(R) — L} (R) is a compact operator for every t > 0

@ Lax’s question: is it possible to give a quantitive estimate of the
compactness of S; ?
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Kolmogorov entropy measure of compactness

Semigroup (S;)

t>0

The scalar conservation law (1) generates an L'-contractive semigroup
St L'(R) — L'(R), t>0,

which associates to every given initial data uy € L'(R) N L*°(R), the unique
entropy admissible weak solution u(t, x) of (1), with initial datum u(0,-) = up

Si(w) = u(t,).

Lax P. D., CPAM (1954)

St L'(R) — L} (R) is a compact operator for every t > 0

@ Lax’s question: is it possible to give a quantitive estimate of the
compactness of S; ?

@ What about the semigroup S; generated by a system of conservation
laws?
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Introduction can etting

Kolmogorov entropy measure of compactness

Kolmogorov e-entropy

Let (X, d) be a metric space, K a totally bounded subset of X.
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Kolmogorov entropy measure of compactness

Kolmogorov e-entropy
Let (X, d) be a metric space, K a totally bounded subset of X.

For e > 0, let N-(K) be the minimal number of sets in a cover of K by subsets
of X having diameter < 2e.
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Introduction o

Ge setting
Kolmogorov entropy measure of compactness

Kolmogorov e-entropy
Let (X, d) be a metric space, K a totally bounded subset of X.

For e > 0, let N-(K) be the minimal number of sets in a cover of K by subsets
of X having diameter < 2e.

Definition
The e-entropy of K is definied as

H.(K | X) = log,N-(K)
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Introduction

General setting
Kolmogorov entropy measure of compactness

Kolmogorov e-entropy

Let (X, d) be a metric space, K a totally bounded subset of X.

For e > 0, let N-(K) be the minimal number of sets in a cover of K by subsets
of X having diameter < 2e.

Definition
The e-entropy of K is definied as

H.(K | X) = log,N-(K)

Problem: provide estimates on Kolmogorov’s e-entropy of
Sr(C), C: bounded set of initial data

for semigoup map Sr generated by:
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Introduction

General setting
Kolmogorov entropy measure of compactness

Kolmogorov e-entropy

Let (X, d) be a metric space, K a totally bounded subset of X.

For e > 0, let N-(K) be the minimal number of sets in a cover of K by subsets
of X having diameter < 2e.

Definition
The e-entropy of K is definied as

H.(K | X) = log,N-(K)

Problem: provide estimates on Kolmogorov’s e-entropy of
Sr(C), C: bounded set of initial data

for semigoup map Sr generated by:
@ a conservation law or a system of conservation laws (w.r.t. L'-topology)
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Introduction

General setting
Kolmogorov entropy measure of compactness

Kolmogorov e-entropy

Let (X, d) be a metric space, K a totally bounded subset of X.

For e > 0, let N-(K) be the minimal number of sets in a cover of K by subsets
of X having diameter < 2e.

Definition
The e-entropy of K is definied as

H.(K | X) = log,N-(K)

Problem: provide estimates on Kolmogorov’s e-entropy of
Sr(C), C: bounded set of initial data

for semigoup map Sr generated by:
@ a conservation law or a system of conservation laws (w.r.t. L'-topology)
@ an Hamilton-Jacobi equation in multi-d space domain (w.r.t. W''-topol.)
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Introduction e etting

Kolmogorov entropy measure of compactness

Applications: rely on Kolmogorov’s e-entropy to:
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Kolmogorov entropy measure of compactness

Applications: rely on Kolmogorov’s e-entropy to:

@ provide estimates on the accuracy and resolution of numerical methods

for conservation laws or Hamilton-Jacobi equations.
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Kolmogorov entropy measure of compactness

Applications: rely on Kolmogorov’s e-entropy to:

@ provide estimates on the accuracy and resolution of numerical methods

@ analyze computational complexity (derive minimum number of needed
operations to compute solutions with an error < ¢)

for conservation laws or Hamilton-Jacobi equations.
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tting

Kolmogorov entropy measure of compactness

Applications: rely on Kolmogorov’s e-entropy to:

@ provide estimates on the accuracy and resolution of numerical methods

@ analyze computational complexity (derive minimum number of needed
operations to compute solutions with an error < ¢)

@ derive control theoretic properties (controllability/approximate control.)

for conservation laws or Hamilton-Jacobi equations.
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Compactness estimates for conservation laws o ~
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Q Compactness estimates for conservation laws
@ Upper estimate for conservation laws

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq'ns



. " U
Compactness estimates for conservation laws Lo

Upper compactness estimates (f’(u) > ¢ > 0)

Given any L, m, M > 0, consider

Clman = {to € L'(R) | Supp(uo) C [—L, L], [|toll, < m, ||uoljce < M}.
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Upper estimate for conservation laws

Compactness estimates for conservation laws R R 5
Lower estim s for conservation laws

Upper compactness estimates (f’(u) > ¢ > 0)

Given any L, m, M > 0, consider
Clman = {to € L'(R) | Supp(uo) C [—L, L], [|toll, < m, ||uoljce < M}.
Goal: Provide an estimate on

Hs(ST(C[L«,m,M])|L1 (R)).
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Upper esnmate for conservation laws
Si s fc

Compactness estimates for conservation laws ation laws

Upper compactness estimates (f’(u) > ¢ > 0)

Given any L, m, M > 0, consider
Ciema = {to € L'(R) | Supp(to) C [~L, L], [|to]lz, < m, [|to]lc= < M}.
Goal: Provide an estimate on
H:(ST(Citmmn)IL' (R)).

Upper estimate of e-entropy:
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Upper estimate for conservation laws

Compactness estimates for conservation laws R R 5
Lower estim s for conservation laws

Upper compactness estimates (f’(u) > ¢ > 0)

Given any L, m, M > 0, consider
Clrmm = {to € L'(R) | Supp(uo) € [~L, L], |[tollz, < m,||uole= < M}.
Goal: Provide an estimate on
H:(ST(Citmmn)IL' (R)).
Upper estimate of e-entropy:

C. De Lellis and F. Golse, CPAM (2005)
Forany T > 0, and for e > 0 sufficiently small one has

24L(T)?

:
1
He(St(Cremm) | L'(R)) < s
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Upper estimate for conservation laws

Compactness estimates for conservation laws R R 5
Lower estir es for conservation laws

Upper compactness estimates (f’(u) > ¢ > 0)

Given any L, m, M > 0, consider
Clrmm = {to € L'(R) | Supp(uo) € [~L, L], |[tollz, < m,||uole= < M}.
Goal: Provide an estimate on
H:(ST(Citmmn)IL' (R)).
Upper estimate of e-entropy:

C. De Lellis and F. Golse, CPAM (2005)
Forany T > 0, and for e > 0 sufficiently small one has

1 4L(T)2
2 m 'R)) < -

H:(ST(Cie,mm) | L'(R)) < - o7

with

L(T) = L+2 sup |/"(2)/ 20T

|z| <M
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Compactness estimates for conservation laws R - o
Lower estima conservation |

Sketch of the proof
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Upper estimate for conservation laws
Loy rc

Compactness estimates for conservation laws . -
r con: ion laws

Sketch of the proof

Key role: f” > ¢ > 0 = Oleinik estimate

y—x

U(t.,y)*U(t,X)S ct

, X<y (u(t, x) = Si(uo)(x))-
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Compactness estimates for conservation laws

Sketch of the proof

Key role: f” > ¢ > 0 = Oleinik estimate

y—x

U(t.,y)*U(t,X)S ct

, X<y (u(t, x) = Si(uo)(x))-

Equivalently, the function x — % — u(t, x) is increasing.
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Upper estimate for conservation laws

Compactness estimates for conservation laws S R 5
Lowet es for conservation laws

Sketch of the proof

Key role: f” > ¢ > 0 = Oleinik estimate

y—x

U(t.,y)*U(t,X)S ct

, X<y (u(t, x) = Si(uo)(x))-

Equivalently, the function x — % — u(t, x) is increasing.
Thus, 5 — S7(Cj,m,m) is a set of bounded, compactly supported and

’ c
increasing functions.
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Upper estimate for conservation laws

Compactness estimates for conservation laws R R 5
Lower estim s for conservation laws

Sketch of the proof

Key role: f” > ¢ > 0 = Oleinik estimate

u(ty) —u(t) < LR x<y (Ut x) = Sw)(x)).
Equivalently, the function x — % — u(t, x) is increasing.
Thus, 5 — St(Ci,mm) is a set of bounded, compactly supported and

increasing functions.

Lemma
For L > 0and V > 0 set

Ziv = {w:[0,L] — [0, V] | wis nondecreasing}.

Then, for 0 < ¢ < £, the following holds:

H.(Zoy | L'([0, 1])) < g L4LV.

[P. L. Bartlett, S. R. Kulkarni and S. E. Posner, IEEE Trans. Inform. Theory (1997)]
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Compactness estimates for conservation laws "
Lower estimates for conservation

Outline

Q Compactness estimates for conservation laws

@ Lower estimates for conservation laws
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Upper estimate for cons

Compactness estimates for conservation laws ”
Lower estimates for conservatlon laws

Lower compactness estimates

Given any L, m, M > 0, consider

Ciema = {Uo € L'(R) | Supp(wo) C [~L, L], |tollz, < m, [|uol|ee < M}.
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Lower compactness estimates

Given any L, m, M > 0, consider

Cimm = {to € L'(R) | Supp(uo) C [—L, L], ||tolle, < m,|[uo]li < M}.

F. A., O. Glass and K. T. Nguyen, CPAM (2012)

For any T > 0 and for £ > 0 sufficiently small, one has

H-(St(Cemm | L'(R))) >
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Lower compactness estimates

Given any L, m, M > 0, consider

Cimm = {to € L'(R) | Supp(uo) C [—L, L], ||tolle, < m,|[uo]li < M}.

F. A., O. Glass and K. T. Nguyen, CPAM (2012)

For any T > 0 and for £ > 0 sufficiently small, one has

H-(St(Cemm | L'(R))) >

By the upper and lower bounds, we conclude

H-(St(Cimm | L'(R))) ~

M| =
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Upper estimate for con tior

Compactness estimates for conservation laws
Lower estimates for conservation Iaws

Outline of the proof

1. Controllability type result.
Introduce a suitable parametrized class F of piecewise affine functions
and show that
F C ST(C[L,m,M])

For v € F, find up € C[L,m,M]
s.t. ST(Uo) =V
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Upper estimate for con tior

Compactness estimates for conservation laws
Lower estimates for conservation Iaws

Outline of the proof

1. Controllability type result.
Introduce a suitable parametrized class F of piecewise affine functions
and show that
F C ST(C[L,m,M])

For v € F, find up € C[L,m,M]
s.t. ST(Uo) =V

2. Combinatorial computation.
Provide an optimal (w.r.t. the parameters) estimate of the maximum
number of functions C.. in F that can be contained in a ball
of radius 2¢ (w.r.t. L' distance)
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Outline of the proof

1. Controllability type result.
Introduce a suitable parametrized class F of piecewise affine functions
and show that
F C ST(C[L,m,M])

For v € F, find up € C[L,m,M]
s.t. ST(Uo) =V

2. Combinatorial computation.
Provide an optimal (w.r.t. the parameters) estimate of the maximum
number of functions C.. in F that can be contained in a ball
of radius 2¢ (w.r.t. L' distance)

= NEIE) 2 P s e (1>
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Reachability of piecewise C' functions

Consider the sets

C[L,m,M] = {Uo S I_1 (R) ‘ SUpp(Uo) C [—I_7 I_]7 HUOHL1 < m, ||U0HL°° < M}

Ame = {1 R = [-M,M] | Supp(¥) C [~L, L], is piecewise C', |v/| < b}
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Upper estimate for conservation laws
Lower estimates for conservation laws

Compactness estimates for conservation laws

Reachability of piecewise C' functions

Consider the sets

C[L,m,M] = {Uo S I_1 (R) ‘ SUpp(Uo) C [—I_7 I_]7 HUOHL1 < m, ||U0HL°° < M}

Ame = {1 R = [-M,M] | Supp(¥) C [~L, L], is piecewise C', |v/| < b}

Proposition 1.

Givenany L, M, m, T > 0, for h sufficiently small,
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Reachability of piecewise C' functions

Consider the sets

C[L,m,M] = {Uo S I_1 (R) ‘ SUpp(Uo) C [—I_7 I_]7 HUOHL1 < m, ||U0HL°° < M}

Ame = {1 R = [-M,M] | Supp(¥) C [~L, L], is piecewise C', |v/| < b}

Proposition 1.

Given any L, M, m, T > 0, for h sufficiently small, one has
Air.np7) € ST(Cre,mmn)s
with L+ = L — aTh, br = %, a = sup‘u|§h|f”(u)|.

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq'ns



Upper estimate for co on

Compactness estimates for conservation laws " "
Lower estimates for conservation laws

GOAL: given € , find up € C[L,m,M] S.t. ST(Uo) =

Backward construction: reversing the direction of time

wo(x) = ¥(—x), w(t, x)= Si(wo)(x).
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Upper estimate for con tior

Compactness estimates for conservation laws
Lower estimates for conservation Iaws

GOAL: given € , find up € C[L,m,M] S.t. ST(Uo) =

Backward construction: reversing the direction of time

wo(x) = ¥(—x), w(t, x)= Si(wo)(x).

Set
u(t,x) = w(T —t,—x), (t,x)e€[0,T] xR.
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

GOAL: given € , find up € C[L,m,M] S.t. ST(Uo) =

Backward construction: reversing the direction of time

wo(x) = ¥(—x), w(t, x)= Si(wo)(x).

Set
u(t,x) = w(T —t,—x), (t,x)e€[0,T] xR.
Observe that
u(T,:) =1.
Moreover
[v'| < br = |ux(t, x)| bounded on [0, T] x R.
Therefore

@ u is a classical solution (entropy admissible) of cons law
= u(t,x) = Sitp(x) on [0, T] xR
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

GOAL: given € , find up € C[L,m,M] S.t. ST(Uo) =

Backward construction: reversing the direction of time

wo(x) = ¥(—x), w(t, x)= Si(wo)(x).

Set
u(t,x) = w(T —t,—x), (t,x)e€[0,T] xR.
Observe that
u(T,:) =1.
Moreover
[v'| < br = |ux(t, x)| bounded on [0, T] x R.
Therefore

@ u is a classical solution (entropy admissible) of cons law
= u(t,x) = Sitp(x) on [0, T] xR

@ estimates along generalized charactherisitcs of w yield

U(O, ) = W(Ta _) S C[L,m,M]
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

GOAL: given € , find up € C[L,m,M] S.t. ST(Uo) =

Backward construction: reversing the direction of time

wo(x) = ¥(—x), w(t, x)= Si(wo)(x).

Set
u(t,x) = w(T —t,—x), (t,x)e€[0,T] xR.
Observe that
u(T,:) =1.
Moreover
[v'| < br = |ux(t, x)| bounded on [0, T] x R.
Therefore

@ u is a classical solution (entropy admissible) of cons law
= u(t,x) = Sitp(x) on [0, T] xR

@ estimates along generalized charactherisitcs of w yield
U(O, ) = W(Ta _) S C[L,m,M]

= e ST(C[L.th])
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Upper estimate for co on

Compactness estimates for conservation laws " "
Lower estimates for conservation laws

Piecewise affine functions in A, 5,

Introduce a two-parameter class F of piecewise affine functions 7, € A; y.»
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Upper estimate for co on

Compactness estimates for conservation laws " "
Lower estimates for conservation laws

Piecewise affine functions in A, 5,

Introduce a two-parameter class F of piecewise affine functions 7, € A; y.»

Given n€ N, n> 1 and h > 0, for every n-tuple ¢ = (vi)i=0.1,....n—1 € {0,1}",
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Upper estimate for con tior

Compactness estimates for conservation laws
Lower estimates for conservation Iaws

Piecewise affine functions in A, 5,

Introduce a two-parameter class F of piecewise affine functions 7, € A; y.»

Given n€ N, n> 1 and h > 0, for every n-tuple ¢ = (vi)i=0.1,....n—1 € {0,1}",
construct 7, as follows

h

Figure : A function 7, for . = (0,1,1,0,0,0,1,1)
h<M, 22<b
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Upper estimate for ci

Compactness estimates for conservation laws
Lower estimates for conservation Iaws

Piecewise affine functions in A v

Introduce a two-parameter class F of piecewise affine functions 7, € A; y.»

Given n€ N, n> 1 and h > 0, for every n-tuple ¢ = (vi)i=0.1,....n—1 € {0,1}",
construct 7, as follows

h

Figure : A function 7, for . = (0,1,1,0,0,0,1,1)
h<M, <b

Observe that
F={F.|ve{0,1}"} C Aim.by-
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Upper estimate for cons

Compactness estimates for conservation laws "
Lower estimates for c

Piecewise affine functions in A, 5,

Introduce a two-parameter class F of piecewise affine functions 7, € A; y.»

Given n€ N, n> 1 and h > 0, for every n-tuple ¢ = (vi)i=0.1,....n—1 € {0,1}",
construct 7, as follows

h

Figure : A function 7, for . = (0,1,1,0,0,0,1,1)
h<M, 22<b

Observe that
F={F.|ve{0,1}"} C Aim.by-

Aim: Provide a lower estimate for H.(F | L'(R)).
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Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Lower estimate for H.(F | L'(R))

For any «,z € {0,1}", one has
||-F'¢ - ./—"[’,HU S Lng(L, Z)
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Upper estimate for con tior

Compactness estimates for conservation laws
Lower estimates for conservation Iaws

Lower estimate for H.(F | L'(R))

For any «,z € {0,1}", one has
|17 = Fillo < BFd(2,7).
where d(¢,7) = Card{k € {1,...,n} | «x # =k} It follows that

|Fo = Fllp <e <= d,7) < =0
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Upper estimate for col tior

ws
Compactness estimates for conservation laws
Lower estimates for conservation laws

Lower estimate for H.(F | L'(R))

For any «,z € {0,1}", one has
|7, = Fillo < 230, 7).
where d(¢,7) = Card{k € {1,...,n} | «x # =k} It follows that
_ ne
|F. = Fillp <e <= d(,1)< AL

Therefore, for any fixed 7 € {0,1}", let C. be the number of F, such that
|7, — Fz|l; < e (such a number is independent of 7).
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Lower estimate for H.(F | L'(R))

For any «,z € {0,1}", one has
||-F'¢ - ./—"[’,HU S Lng(L, Z)

where d(¢,7) = Card {k € {1,...,n} | « # i} It follows that
. ne
|[F. = Fillp <e <= d(,1) < ShL

Therefore, for any fixed 7 € {0,1}", let C. be the number of F, such that
|7, — Fz|l; < e (such a number is independent of 7).

L2k
n

£=0

We have

where Xj, ..., X, are indep. random variables with Bernoulli distribution
P(Xi=0)=P(Xi=1) = %
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Lower estimate for H.(F | L'(R))

For any «,z € {0,1}", one has
|17 = Fillo < BFd(2,7).
where d(¢,7) = Card{k € {1,...,n} | «x # =k} It follows that

Ne
— F: < ) < —.
|F. = Fillp <e <= d(,1)< AL

Therefore, for any fixed 7 € {0,1}", let C. be the number of F, such that
|7, — Fz|l; < e (such a number is independent of 7).

We have

i) n 1 ne
c.=> |} :§P<x1+...+xng[mJ>

£=0

where Xj, ..., X, are indep. random variables with Bernoulli distribution
P(Xi=0)=P(Xi=1) = %
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Upper estimate for ci

Compactness estimates for conservation laws
Lower estimates for conservation Iaws

Lower estimate for H.(F | L'(R)) ... continued

By Hoeffding’s inequality, one obtains
n n €V
C.<2 exp(—5 (1 _E>)

(taking h = 2t n= %)
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Upper estimate for ci

Compactness estimates for conservation laws
Lower estimates for conservation Iaws

Lower estimate for H.(F | L'(R)) ... continued

By Hoeffding’s inequality, one obtains
n n £V n 1 4pL?
< —= < —— ).
Cg—ze"p( 2 (1- Lh))wax2 eXp( c 27)

(taking h = 2t n= %)
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Upper estimate for col tior

ws
Compactness estimates for conservation laws
Lower estimates for conservation laws

Lower estimate for H.(F | L'(R)) ... continued

By Hoeffding’s inequality, one obtains

n n e\ n 1 4bl?
C.<2 eXp(_E (1_E>) =2 eXp(_E 27 )

h,n

(taking h = 2t n= %)

Notice: any element of an =-cover of F contains at most C.. functions of F.
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Lower estimate for H.(F | L'(R)) ... continued

By Hoeffding’s inequality, one obtains

n n e\ n 1 4bl?
C.<2 eXp(_E (1_E>) =2 eXp(_E 27 )

h,n

(taking h = 2t n= %)

Notice: any element of an =-cover of F contains at most C.. functions of F.

Card{F} =2"

satisfies

2" 2pl2
Nz g e ( )
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Lower estimate for H.(F | L'(R)) ... continued

By Hoeffding’s inequality, one obtains

n n e\ n 1 4bl?
C.<2 eXp(_E (1_E>) =2 eXp(_E 27 )

h,n

(taking h = 2t n= %)

Notice: any element of an =-cover of F contains at most C.. functions of F.

Card{7} =2" = N.(F)= [minimal # of setsin ae-cover of 7]

satisfies
N.(F) >

2" oo (1. 2L
C. =P\ 27
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. . Upper estimate for conservation laws
Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Lower estimate for H.(F | L'(R)) ... continued

By Hoeffding’s inequality, one obtains

n n e\ n 1 4bl?
C.<2 eXp(_E (1_E>) =2 eXp(_E 27 )

h,n

(taking h = 2t n= %)

Notice: any element of an =-cover of F contains at most C.. functions of F.

Card{7} =2" = N.(F)= [minimal # of setsin ae-cover of 7]

satisfies . )
2 1 2bL

_ > > -
N.(F) > o 7exp<€ 57 )

= HE(HU(R))Z;znn(z)'
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Uppel or cons n lay

Compactness estimates for conservation laws -
Lower estimates for conservation laws

Lower compactness estimates

® F CAurnby

2bl?

— e [ LR 2 B UR) 2 L oo
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Upper estimate for col tior

ws
Compactness estimates for conservation laws
Lower estimates for conservation laws

Lower compactness estimates

® F CAurnby

—  H(A R > H(F| LR > . 2P
WLy hibr] =k = ¢ 27In(2)

) A[Lr,h,br] C ST(C[L,m,M]), with

. . 1 . 1!
Lr=L—aTh, br=—, a=supuslf’(u)l,
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. . Upper estimate for conservation laws
Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Lower compactness estimates

® F CAurnby

—  H(4 L(R) > H(F | L(R) > . 2B
e\Lr.hobr] =" = ¢ 27In(2)

) A[Lr,h,br] C ST(C[L,m,M]), with

. . 1 . 1!
Lr=L—aTh, br=—, a=supuslf’(u)l,

C-L?

= HASt(Cmm | L'(R))) > T

M| =
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Lower compactness estimates for systems

Consider a strictly hyperbolic system of conservation laws
ou+oxf(uy=0, xeR, ueQcRr"

(M(u) < -+ < An(u) eigenvalues of Df(u) with eigenvectors r;)
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Lower compactness estimates for systems

Consider a strictly hyperbolic system of conservation laws
ou+oxf(uy=0, xeR, ueQcRr"
(M(u) < -+ < An(u) eigenvalues of Df(u) with eigenvectors r;)

F. A., O. Glass and K. T. Nguyen (2013)
Given any L, m, M > 0, consider

CP man = { o € L'(R) | Supp(to) € [~L, ], [uolle, < m, |uollis < M,
Tot.Var.{uo} < 50}, do < 1.
For any T > 0 and for ¢ > 0 sufficiently small, one has
1 C-LPN?
€ T

for some constant C > 0 (depending on V \;, Dr; and &o)

H:(ST(C man | L'(R))) >
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Upper estimate for con tior

Compactness estimates for conservation laws
Lower estimates for conservation Iaws

Outline of the proof

1. Let s — Ri(s) denote the integral curve of the i-th eigenvector r;, starting
at the origin.
Consider a family of profiles of i-simple waves {¢; }, defined as
parametrizations
s+ ¢i(s) = Ri(B.(s))
of R; through a suitable class of piecewise affine, compactly supported
functions {8.}..
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Upper estimate for cons

Compactness estimates for conservation laws "
Lower estimates for c

Outline of the proof

1. Let s — Ri(s) denote the integral curve of the i-th eigenvector r;, starting
at the origin.
Consider a family of profiles of i-simple waves {¢; }, defined as
parametrizations
s+ ¢i(s) = Ri(B.(s))
of R; through a suitable class of piecewise affine, compactly supported
functions {8.}..

2. Givenany L,m,M, T > 0, for h sufficiently small, and for any profile

of superposition ¢*> '~ of simple waves ¢;', ..., o5,
with |3,| < h, |8.'| < br,forallt =4,...,wn, ONe has

Qﬁ” sees LN c ST(C[L’m,M])
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Upper estimate for con: tior

Compactness estimates for conservation laws
Lower estimates for conservation Iaws

Outline of the proof ... continued

3. Consider a two-parameter class F of profiles of superposition ¢*1»N
of simple waves associated to a two-parameter class 1B of N-tuples of
piecewise affine, compactly supported functions (3.,, ..., .,) so that

F C ST(C[L",-,,,M])
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Upper estimate for cons

Compactness estimates for conservation laws
Lower estimates for conservation Iaws

Outline of the proof ... continued

3. Consider a two-parameter class F of profiles of superposition ¢*1»N
of simple waves associated to a two-parameter class 1B of N-tuples of
piecewise affine, compactly supported functions (3.,, ..., .,) so that

F C ST(C[L",-,,,M])
4. Observe that, setting
7 = [max # elements in F contained in a ball of radius ¢ w.r.t. L'-distance]

C5 =[max # elements in B contained in a ball of radius 2 w.r.t. L'-distance]

one has
cl <ck.
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Upper estimate for cons

Compactness estimates for conservation laws
Lower estimates for conservation Iaws

Outline of the proof ... continued

3. Consider a two-parameter class F of profiles of superposition ¢*1»N
of simple waves associated to a two-parameter class 1B of N-tuples of
piecewise affine, compactly supported functions (3.,, ..., .,) so that

F C ST(C[L",-,,,M])
4. Observe that, setting
7 = [max # elements in F contained in a ball of radius ¢ w.r.t. L'-distance]

C5 =[max # elements in B contained in a ball of radius 2 w.r.t. L'-distance]

one has
cl <ck.

5. Provide an optimal (w.r.t. the parameters) estimate of C5 by the same
combinatorial arguments used for scalar conservation laws.
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Compactness estimates for Temple systems

Consider a strictly hyperbolic system of conservation laws of Temple class:

- endowed with a coordinates system w = (wj, ..., wy) of Riemann
invariants w; = w;(u) associated to each characteristic field r;;

- the level sets {u € Q; w;(u) = constant} of every Riemann invariant
are hyperplanes;
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Compactness estimates for Temple systems

Consider a strictly hyperbolic system of conservation laws of Temple class:

- endowed with a coordinates system w = (wj, ..., wy) of Riemann
invariants w; = w;(u) associated to each characteristic field r;;

- the level sets {u € Q; w;(u) = constant} of every Riemann invariant
are hyperplanes;

with all characteristic family genuinely nonlinear.
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Upper estimate for conservation laws

Compactness estimates for conservation laws " .
Lower estimates for conservation laws

Compactness estimates for Temple systems

Consider a strictly hyperbolic system of conservation laws of Temple class:

- endowed with a coordinates system w = (wj, ..., wy) of Riemann
invariants w; = w;(u) associated to each characteristic field r;;

- the level sets {u € Q; w;(u) = constant} of every Riemann invariant
are hyperplanes;

with all characteristic family genuinely nonlinear.

F. A., O. Glass and K. T. Nguyen (2013)

Given any L, m, M > 0, consider

Ciemmn = {vo € L'(R) | Supp(uo) € [~L, L] |uolu, < m, uollu < M}.
Forany T > 0 and for € > 0 sufficiently small, one has
1 C: L2 N2
€ T
for some constant C > 0 (depending on V\;, Dr;)

H-(S7(Cre,mm | L'(R))) <
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Compactness estimates for HJ equations

From conservation laws to HJ equations

Given u(t, x) entropy weak solution of the conservation law
Otu + Oxf(u) =0, x € R,

the function

v(t,x)i/x u(t, z)dz

is a viscosity solution of the Hamilton-Jacobi equation

otv + f(0xv) =0, x eR.
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Compactness estimates for HJ equations

From conservation laws to HJ equations

Given u(t, x) entropy weak solution of the conservation law
Otu + Oxf(u) =0, x € R,

the function

v(t,x)i/x u(t, z)dz

— 00

is a viscosity solution of the Hamilton-Jacobi equation

otv + f(0xv) =0, x eR.

Notice: quantitative compactness estimates for conservation laws
w.r.t. L'-topology plus Poincaré inequality = quantitative
compactness estimates for H-J w.r.t. W' '-topology in 1-dim case.
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Compactness estimates for HJ equations

General setting

Consider a HJ equation

u(t, x) + H(Vxu(t, x)) =0,
u(0,-) = uo(-) € Lip(R")

where u : [0, +oo[xR" — R and H € C*(R") satisfies:
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Compactness estimates for HJ equations

General setting

Consider a HJ equation
ui(t, x) + H(Vxu(t,x)) =0,
u(0,-) = uo(-) € Lip(R")

where u : [0, +oo[xR” — R and H € C*(R") satisfies:
(UC) uniform convexity: D*H(p) > « - In, a > 0.
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Compactness estimates for HJ equations

General setting

Consider a HJ equation
ui(t, x) + H(Vxu(t,x)) =0,
u(0,-) = uo(-) € Lip(R")

where u : [0, +oo[xR" — R and H € C*(R") satisfies:
(UC) uniform convexity: D*H(p) > « - In, a > 0.

For every ug(-) € Lip(R"), (4) admits a unique viscosity solution u given by
Hopf’s formula

u(t,x) = m|n {t L( ) + uo(y)}
(L(q) = maxpern{< p,q > fH(p)} Legendre transform of H)
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Compactness estimates for HJ equations

General setting

Consider a HJ equation
ui(t, x) + H(Vxu(t,x)) =0,
u(0,-) = uo(-) € Lip(R")

where u : [0, +oo[xR" — R and H € C*(R") satisfies:
(UC) uniform convexity: D*H(p) > « - In, a > 0.

For every ug(-) € Lip(R"), (4) admits a unique viscosity solution u given by
Hopf’s formula

u(t,x) = mln {t L( ) + uo(y)}

(L(q) = maxpern{< p,q > fH(p)} Legendre transform of H)
One has that
@ u(t,-) is Lipschitz,

@ u(t,-) is semiconcave with semiconcavity constant -, i.e.,

(){f’

u(t, x) — (1/2at) - |x|? is concave.
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Compactness estimates for HJ equations

Hopf-Lax semigroup

The H-J egn generates a semigroup
St : Lip(R™) — Lip(R"), t>0,

which associates to every given initial data up € Lip(R"), the unique viscosity
solution u(t, x) of (1), with initial datum u(0, -) = wp

Si(w) = u(t,).

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq'ns



Compactness estimates for HJ equations

Hopf-Lax semigroup

The H-J egn generates a semigroup
St : Lip(R™) — Lip(R"), t>0,

which associates to every given initial data up € Lip(R"), the unique viscosity
solution u(t, x) of (1), with initial datum u(0, -) = wp

Si(w) = u(t,).
St : Lip(R") — Lip(R") is a compact operator in W, ! (R") for every t > 0.
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Compactness estimates for HJ equations

Hopf-Lax semigroup

The H-J egn generates a semigroup
St : Lip(R™) — Lip(R"), t>0,

which associates to every given initial data up € Lip(R"), the unique viscosity
solution u(t, x) of (1), with initial datum u(0, -) = wp

Si(w) = u(t,).
St : Lip(R") — Lip(R") is a compact operator in W, ! (R") for every t > 0.

C

Problem: Given L, M, T > 0, consider
Cim = {u € Lip(R") : supp(u) C [-L,L]", Lip[u] < M}.

Provide upper and lower estimates on

H-(St(Ciam) + T - H(O) | Wil (R")).

loc
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Compactness estimates for HJ equations

Given L, M > 0, consider
Cum = {uelip(R") : supp(u) C [-L,L]", Lip[u] < M}.

For every T > 0 and every u € Cy. ;, there holds

Sr(u)

L Ly X

- 0 .
~T-H(0)
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Upper

Lower

Compactness estimates for HJ equations

Proposition

Given L, M > 0, consider
Cum = {uelip(R") : supp(u) C [-L,L]", Lip[u] < M}.

For every T > 0 and every u € Cy. ;, there holds
Q Lip[Sr(u)] < M
Q spt(Sr(u)+T- H(O)) C[-Lr,L7]", Lt =L+ T- sup |VH(p)|

lpl<M

SN e
S 0 N

—T-H(0)
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Upper estimates

Low: s
Compactness estimates for HJ equations o

Outline

e Compactness estimates for HJ equations
@ Upper estimates
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Upper estimates
Lower estimates

Compactness estimates for HJ equations

Upper estimates

F.A., P. Cannarsa, K.T. Nguyen (2013)

Let H satisfy (UC) and VH(0) = 0. For any T > 0, and for £ > 0 sufficiently
small, one has

H-(St(Cium) + T - H(O) | WH(R™)) < T - 517

for some constant 't > 0 depending on L, M.
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Upper estimates
Lower estimates

Compactness estimates for HJ equations

Upper estimates

F.A., P. Cannarsa, K.T. Nguyen (2013)

Let H satisfy (UC) and VH(0) = 0. For any T > 0, and for £ > 0 sufficiently
small, one has

H-(St(Cium) + T - H(O) | WH(R™)) < T - 517

for some constant 't > 0 depending on L, M.

Main steps of the proof:
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Upper estimates
Lower estimates

Compactness estimates for HJ equations

Upper estimates

F.A., P. Cannarsa, K.T. Nguyen (2013)

Let H satisfy (UC) and VH(0) = 0. For any T > 0, and for £ > 0 sufficiently
small, one has

H-(St(Cium) + T - H(O) | WH(R™)) < T - 517

for some constant 't > 0 depending on L, M.

Main steps of the proof:
1. Sr(Cm) + T - H(O) C sc[ﬁLTyM] where L7 = L+ sup <y [VH(p)|
and

SCix,,m = {U € Ci,m | U semiconcave with constant K }
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Upper estimates
Lower estimates

Compactness estimates for HJ equations

Upper estimates

F.A., P. Cannarsa, K.T. Nguyen (2013)

Let H satisfy (UC) and VH(0) = 0. For any T > 0, and for £ > 0 sufficiently
small, one has

H-(St(Cium) + T - H(O) | WH(R™)) < T - 517

for some constant 't > 0 depending on L, M.

Main steps of the proof:
1. Sr(Cm) + T - H(O) C sc[ﬁLTyM] where L7 = L+ sup <y [VH(p)|
and

SCix,,m = {U € Ci,m | U semiconcave with constant K }

2. UeSCkim = X D*u(x) — Kx is monotone decreas. multif.
(D*u(x) superdifferential of u at x)
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Compactness estimates for HJ equations

Upper estimates ... continued

3. relying on a Poincaré ineq. and on fine properties of monotone multif.
derive an upper bound for the e-entropy of a class of bounded,
monotone decreasing multifunctions, with uniformly bounded total
variation, defined on a bounded domain.
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S

Compactness estimates for HJ equations

Upper estimates ... continued

3. relying on a Poincaré ineq. and on fine properties of monotone multif.
derive an upper bound for the e-entropy of a class of bounded,
monotone decreasing multifunctions, with uniformly bounded total
variation, defined on a bounded domain.

4. relying on 2.-3. derive an upper bound for the e-entropy of semiconcave
functions

H-(SCim | W (R™) < T -

L=

for some constant 7 > 0 depending on K, L, M.
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Upper estimates

Lower estim
Compactness estimates for HJ equations Sl GRS

Outline

e Compactness estimates for HJ equations

@ Lower estimates
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Upper estimates

L ;
Compactness estimates for HJ equations Sl GRS

Lower estimates

F.A., P. Cannarsa, K.T. Nguyen (2013)

Let H satisfy (UC) and VH(0) = 0. For any T > 0, and for € > 0 sufficiently
small, one has

H(Sr(Can) + T H(O) | WM (R?) 2 T~ -

en

for some constant '™ > 0 depending on L, M.
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Upper estimates

Lower estim
Compactness estimates for HJ equations Sl GRS

Lower estimates

F.A., P. Cannarsa, K.T. Nguyen (2013)

Let H satisfy (UC) and VH(0) = 0. For any T > 0, and for € > 0 sufficiently
small, one has

H(Sr(Can) + T H(O) | WM (R?) 2 T~ -

en

for some constant '™ > 0 depending on L, M.

Therefore,
1
H-(St(Cum) + T - HO) | WH(R")) = =
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Upper estimates

Lower estim
Compactness estimates for HJ equations Sl GRS

Main steps toward lower estimates on H.(St(Ci. ) | Wﬂo‘; (R™M)

1. Controllability type result.
Introduce a suitable parametrized class ¢/ of smooth functions defined
as combinations of suitable bump functions, and show that any element
of such a class, up to a translation by a fixed map v, can be obtained, at
any given time T, as the value u(T, -) of a viscosity solution with initial
data in C[L,M]-
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Upper estimates

Lower estim
Compactness estimates for HJ equations Sl GRS

Main steps toward lower estimates on H.(St(Ci. ) | Wﬂo‘; (R™M)

1. Controllability type result.
Introduce a suitable parametrized class ¢/ of smooth functions defined
as combinations of suitable bump functions, and show that any element
of such a class, up to a translation by a fixed map v, can be obtained, at
any given time T, as the value u(T, -) of a viscosity solution with initial
data in C[L,M]-

2. Combinatorial computation.
Provide an optimal (w.r.t. the parameters) estimate of the maximum
number of functions in such a class ¢/ that can be contained in a ball
of radius 2¢ (w.rt. W' distance).
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Upper estimates
Lower estimates

Compactness estimates for HJ equations

Reachability of semiconcave functions

Proposition 1

Let H satisfy (UC) and VH(0) = 0. Given any K,L,M > 0and T > 0 such
that

1
<
K< Joero) T T

for m sufficiently small one has

SC[K’L/Q’m] —T. H(O) C ST(C[L’M])‘
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Upper estimates
Lower estimates

Compactness estimates for HJ equations

Reachability of semiconcave functions

Proposition 1

Let H satisfy (UC) and VH(0) = 0. Given any K,L,M > 0and T > 0 such
that

1
<
K< Joero) T T

for m sufficiently small one has

SC[K’L/Q’m] —T. H(O) C ST(C[L’M])‘

Goal: for T u_T
ur € SC[K"L/Q’m] e E H(O),
we find ug € C[L,M] such that

ST(Uo) = ur.
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Upper estimates

Lower estim
Compactness estimates for HJ equations Sl GRS

Backward construction

Reversing the direction of time
wo(x) := ur(—x),  w(t,x) = Si(wo)(x).

Set
u(t,x) = —w(T —t,—x), (t,x)€[0,T]xR".
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Upper estimates

Lower estim
Compactness estimates for HJ equations Sl GRS

Backward construction

Reversing the direction of time
wo(x) := ur(—x),  w(t,x) = Si(wo)(x).

Set
u(t,x) = —w(T —t,—x), (t,x)€[0,T] xR".
Observe that
e u(T,:)=ur(),
o Uo(-) = U(O7 ) € C[L/2_’M],
@ For almost every (t,x) € [0, T] x R”,

ui(t, x) + H(Vxu(t,x)) = 0.
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Backward construction

Reversing the direction of time
wo(x) := ur(—x),  w(t,x) = Si(wo)(x).

Set
u(t,x) = —w(T —t,—x), (t,x)€[0,T] xR".
Observe that
® u(T, ) =ur(),
@ uo(+) == u(0,") € Cyya.m,
@ For almost every (t,x) € [0, T] x R”,
u(t, x) + H(Vxu(t, x)) = 0.

= to prove ur € St(Cj M), we need to show that u(t, x) is a viscosity
solution.
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AIM: show that w(t, x) is smooth in ]0, T[xR".
Since w(0, ) = —ur(—-) is semiconvex with semiconvexity constant
-K > W’ if Lip[w(0, -)] is sufficiently small, one has

w(t,-) is semiconvex Vi< T

Dw(0,) Dw(T,)
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AIM: show that w(t, x) is smooth in ]0, T[xR".
Since w(0, ) = —ur(—-) is semiconvex with semiconvexity constant
-K > W’ if Lip[w(0, -)] is sufficiently small, one has

w(t,-) is semiconvex Vi< T

Dw(0,) Dw(T,)

— w(t,-) is both semiconcave and semiconvex, hence w(t) € C'
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AIM: show that w(t, x) is smooth in ]0, T[xR".
Since w(0, ) = —ur(—-) is semiconvex with semiconvexity constant
-K > W’ if Lip[w(0, -)] is sufficiently small, one has

w(t,-) is semiconvex Vi< T

Dw(0,) Dw(T,)

— w(t,-) is both semiconcave and semiconvex, hence w(t) € C'

Therefore, u is a classical solution of H-J equation in [0, T] x R" and hence
it is a viscosity solution. It implies that

ur = ST(Uo).
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Lower estimates of H.(SCx ;. a | W1 (R"))

Proposition 2
Given K, L, M > 0, for ¢ > 0, it holds

_ 1
'HS(SC[K’L,M] |W1’1(Rn)) > - 57

o

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq'ns



Upper estimates
Lower estimates

Compactness estimates for HJ equations

Lower estimates of H.(SCx ;. a | W1 (R"))

Proposition 2
Given K, L, M > 0, for ¢ > 0, it holds

_ 1
'HS(SC[K’L,M] |W1’1(Rn)) > - 57

Sketch of proof (n = 2):

Given N € Z*, we divide [0, L]?
into N2 squares

o= |J 0O.

ve{1,...,N}2 .

A bump function b : 0 — R such
that
@ Lip[b] < {5, [|blly1 < %
@ b,—bis semiconcave with
constant K.
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A class of smooth functions

Let
Bwi={6=Ocqr,.mpe |0 € (-1.1}}
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A class of smooth functions

Let

Bwi={6=Ocqr,.mpe |0 € (-1.1}}

A class of smooth functions

uN::{u,;: S 6

e{1,...,N}2

5eAN}.
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A class of smooth functions

Let

Ay = {5 = Le{1 ..... N}2

A class of smooth functions

For N sufficiently large, one has that

Un C SC[K’L’M] .

On the other hand, by choosing N ~ ! we have

He(Un | WH(R?) =T -

0')\)‘_k
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A class of smooth functions

Let

AN = {(5 = (5L)Le{1 ..... N}2

A class of smooth functions

uy={us= 3 o by|6enn}
vef{1,...,N}2
For N sufficiently large, one has that
Un C SCik,Lm-
On the other hand, by choosing N = g we have
ety | W R 2T

Therefore,
o1
Ho(SCikm | W (RE) >T7 - .

C
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Merci de votre attention!
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Viscosity solutions
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Viscosity solutions

A function u € C([0, T] x R") is a viscosity solution of

ur+ H(t,x,Vu) =0 in];[0,T] x R"
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Viscosity solutions

A function u € C([0, T] x R") is a viscosity solution of
ur+ H(t,x,Vu) =0 in];[0,T] x R"
if for every (t,x) € (0, T) x R" and every ¢ € C'((0, T) x R")
@ u— ¢ has alocal maximum at (t,x) = ¢:(t,x) + H(t, x, Vo(t, x))<0
@ u— ¢ has alocal minimum at (t,x) = &(t, x) + H(t, x, V¢(t, x)) =0

<

N
©-

¢
u
N
7N
>
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