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Compactness estimates for HJ equations

General setting
Kolmogorov entropy measure of compactness

Scalar conservation laws

Consider a scalar conservation law

∂tu + ∂x f (u) = 0, x ∈ R, (1)

where

u = u(t , x) is the state variable

the flux f = f (u) is (uniformly) strictly convex

f ′′(u) ≥ c > 0 ∀u ∈ R.
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Kolmogorov entropy measure of compactness

Entropy weak solutions

Distributional weak solution of (1)∫ ∫
[u∂t ϕ+ f (u)∂x ϕ] = 0 ∀ϕ ∈ C1

c (]0,+∞[×R). (2)

Lax stability condition for admissibility

u(t , x−) ≥ u(t , x+) for a.e t > 0, ∀x ∈ R. (3)

u is an entropy admissible weak solution of (1) if u satisfies (2) and (3).
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Semigroup
(
St
)

t≥0

The scalar conservation law (1) generates an L1-contractive semigroup

St : L1(R)→ L1(R), t > 0,

which associates to every given initial data u0 ∈ L1(R) ∩ L∞(R), the unique
entropy admissible weak solution u(t , x) of (1), with initial datum u(0, ·) = u0

St (u0)
.

= u(t , ·).

Lax P. D., CPAM (1954)

St : L1(R) −→ L1
loc(R) is a compact operator for every t > 0

Lax’s question: is it possible to give a quantitive estimate of the
compactness of St ?

What about the semigroup St generated by a system of conservation
laws?
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Kolmogorov ε-entropy

Let (X , d) be a metric space, K a totally bounded subset of X .

For ε > 0, let Nε(K ) be the minimal number of sets in a cover of K by subsets
of X having diameter ≤ 2ε.

Definition
The ε-entropy of K is definied as

Hε(K | X )
.

= log2Nε(K )

Problem: provide estimates on Kolmogorov’s ε-entropy of

ST (C), C : bounded set of initial data

for semigoup map ST generated by:

a conservation law or a system of conservation laws (w.r.t. L1-topology)

an Hamilton-Jacobi equation in multi-d space domain (w.r.t. W 1,1-topol.)
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General setting
Kolmogorov entropy measure of compactness

Applications: rely on Kolmogorov’s ε-entropy to:

provide estimates on the accuracy and resolution of numerical methods

analyze computational complexity (derive minimum number of needed
operations to compute solutions with an error < ε)

derive control theoretic properties (controllability/approximate control.)

for conservation laws or Hamilton-Jacobi equations.
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Upper estimate for conservation laws
Lower estimates for conservation laws

Upper compactness estimates (f ′′(u) ≥ c > 0)

Given any L,m,M > 0, consider

C[L,m,M] :=
{

u0 ∈ L1(R) | Supp(u0) ⊂ [−L, L], ‖u0‖L1 ≤ m, ‖u0‖L∞ ≤ M
}
.

Goal: Provide an estimate on

Hε(ST (C[L,m,M])|L1(R)).

Upper estimate of ε-entropy:

C. De Lellis and F. Golse, CPAM (2005)

For any T > 0, and for ε > 0 sufficiently small one has

Hε(ST (C[L,m,M]) | L1(R)) ≤ 1
ε
· 24L(T )2

cT
,

with

L(T ) = L + 2 sup
|z|≤M

|f ′′(z)|
√

2mT
c

.
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Upper estimate for conservation laws
Lower estimates for conservation laws

Sketch of the proof

Key role: f ′′ ≥ c > 0 =⇒ Oleinik estimate

u(t , y)− u(t , x) ≤ y − x
c t

, x < y (u(t , x)
.

= St (u0)(x)).

Equivalently, the function x 7→ x
ct − u(t , x) is increasing.

Thus, ·ct − ST (C[L,m,M]) is a set of bounded, compactly supported and
increasing functions.

Lemma

For L > 0 and V > 0 set

IL,V = {w : [0, L]→ [0,V ] | w is nondecreasing}.

Then, for 0 < ε ≤ LV
6 , the following holds:

Hε(IL,V | L1([0, L])) ≤ 1
ε
· 4LV .

[P. L. Bartlett, S. R. Kulkarni and S. E. Posner, IEEE Trans. Inform. Theory (1997)]
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Lower compactness estimates

Given any L,m,M > 0, consider

C[L,m,M]
.

=
{

u0 ∈ L1(R) | Supp(u0) ⊂ [−L, L], ‖u0‖L1 ≤ m, ‖u0‖L∞ ≤ M
}
.

F. A., O. Glass and K. T. Nguyen, CPAM (2012)

For any T > 0 and for ε > 0 sufficiently small, one has

Hε(ST (C[L,m,M] | L1(R))) ≥ 1
ε
· L2

48 · ln(2) · |f ′′(0)|T .

By the upper and lower bounds, we conclude

Hε(ST (C[L,m,M] | L1(R))) ≈ 1
ε
.

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq’ns



Introduction
Compactness estimates for conservation laws

Compactness estimates for HJ equations

Upper estimate for conservation laws
Lower estimates for conservation laws

Lower compactness estimates

Given any L,m,M > 0, consider

C[L,m,M]
.

=
{

u0 ∈ L1(R) | Supp(u0) ⊂ [−L, L], ‖u0‖L1 ≤ m, ‖u0‖L∞ ≤ M
}
.

F. A., O. Glass and K. T. Nguyen, CPAM (2012)

For any T > 0 and for ε > 0 sufficiently small, one has

Hε(ST (C[L,m,M] | L1(R))) ≥ 1
ε
· L2

48 · ln(2) · |f ′′(0)|T .

By the upper and lower bounds, we conclude

Hε(ST (C[L,m,M] | L1(R))) ≈ 1
ε
.

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq’ns



Introduction
Compactness estimates for conservation laws

Compactness estimates for HJ equations

Upper estimate for conservation laws
Lower estimates for conservation laws

Lower compactness estimates

Given any L,m,M > 0, consider

C[L,m,M]
.

=
{

u0 ∈ L1(R) | Supp(u0) ⊂ [−L, L], ‖u0‖L1 ≤ m, ‖u0‖L∞ ≤ M
}
.

F. A., O. Glass and K. T. Nguyen, CPAM (2012)

For any T > 0 and for ε > 0 sufficiently small, one has

Hε(ST (C[L,m,M] | L1(R))) ≥ 1
ε
· L2

48 · ln(2) · |f ′′(0)|T .

By the upper and lower bounds, we conclude

Hε(ST (C[L,m,M] | L1(R))) ≈ 1
ε
.

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq’ns



Introduction
Compactness estimates for conservation laws

Compactness estimates for HJ equations

Upper estimate for conservation laws
Lower estimates for conservation laws

Outline of the proof

1. Controllability type result.
Introduce a suitable parametrized class F of piecewise affine functions
and show that

F ⊂ ST (C[L,m,M])

For Ψ ∈ F , find u0 ∈ C[L,m,M]

s.t. ST (u0) = Ψ

0

T

u_0

ψ

2. Combinatorial computation.
Provide an optimal (w.r.t. the parameters) estimate of the maximum
number of functions C2ε in F that can be contained in a ball
of radius 2ε (w.r.t. L1 distance)

=⇒ Nε(F | L1(R)) ≥ Card{F}
C2ε

≈ exp
(

1
ε

)
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Reachability of piecewise C1 functions

Consider the sets

C[L,m,M]
.

=
{

u0 ∈ L1(R) | Supp(u0) ⊂ [−L, L], ‖u0‖L1 ≤ m, ‖u0‖L∞ ≤ M
}

A[L,M,b]
.

=
{
ψ : R→ [−M,M]

∣∣ Supp(ψ) ⊂ [−L, L], ψ is piecewise C1, |ψ′| ≤ b
}

Proposition 1.

Given any L,M,m,T > 0, for h sufficiently small, one has

A[LT ,h,bT ] ⊂ ST (C[L,m,M]),

with LT
.

= L− αTh, bT
.

= 1
αT , α

.
= sup|u|≤h|f ′′(u)|.

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq’ns



Introduction
Compactness estimates for conservation laws

Compactness estimates for HJ equations

Upper estimate for conservation laws
Lower estimates for conservation laws

Reachability of piecewise C1 functions

Consider the sets

C[L,m,M]
.

=
{

u0 ∈ L1(R) | Supp(u0) ⊂ [−L, L], ‖u0‖L1 ≤ m, ‖u0‖L∞ ≤ M
}

A[L,M,b]
.

=
{
ψ : R→ [−M,M]

∣∣ Supp(ψ) ⊂ [−L, L], ψ is piecewise C1, |ψ′| ≤ b
}

Proposition 1.

Given any L,M,m,T > 0, for h sufficiently small, one has

A[LT ,h,bT ] ⊂ ST (C[L,m,M]),

with LT
.

= L− αTh, bT
.

= 1
αT , α

.
= sup|u|≤h|f ′′(u)|.

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq’ns



Introduction
Compactness estimates for conservation laws

Compactness estimates for HJ equations

Upper estimate for conservation laws
Lower estimates for conservation laws

Reachability of piecewise C1 functions

Consider the sets

C[L,m,M]
.

=
{

u0 ∈ L1(R) | Supp(u0) ⊂ [−L, L], ‖u0‖L1 ≤ m, ‖u0‖L∞ ≤ M
}

A[L,M,b]
.

=
{
ψ : R→ [−M,M]

∣∣ Supp(ψ) ⊂ [−L, L], ψ is piecewise C1, |ψ′| ≤ b
}

Proposition 1.

Given any L,M,m,T > 0, for h sufficiently small, one has

A[LT ,h,bT ] ⊂ ST (C[L,m,M]),

with LT
.

= L− αTh, bT
.

= 1
αT , α

.
= sup|u|≤h|f ′′(u)|.

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq’ns



Introduction
Compactness estimates for conservation laws

Compactness estimates for HJ equations

Upper estimate for conservation laws
Lower estimates for conservation laws

GOAL: given ψ ∈ A[LT ,h,bT ], find u0 ∈ C[L,m,M] s.t. ST (u0) = ψ

Backward construction: reversing the direction of time

w0(x)
.

= ψ(−x), w(t , x)
.

= St (w0)(x).

Set
u(t , x)

.
= w(T − t ,−x), (t , x) ∈ [0,T ]× R.

Observe that
u(T , ·) = ψ.

Moreover

|ψ′| ≤ bT =⇒ |ux (t , x)| bounded on [0,T ]× R.

Therefore
u is a classical solution (entropy admissible) of cons law
=⇒ u(t , x) = Stu0(x) on [0,T ]× R

estimates along generalized charactherisitcs of w yield

u(0, ·) = w(T ,−·) ∈ C[L,m,M]

=⇒ ψ ∈ ST (C[L,m,M])
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Piecewise affine functions in AL,M,b

Introduce a two-parameter class F of piecewise affine functions Fι ∈ AL,M,b

Given n ∈ N, n > 1 and h > 0, for every n-tuple ι = (ιi )i=0,1,...,n−1 ∈ {0, 1}n,
construct Fι as follows

0

h

L

−L

Figure : A function Fι for ι = (0, 1, 1, 0, 0, 0, 1, 1)

h ≤ M, nh
L ≤ b

Observe that
F = {Fι | ι ∈ {0, 1}n} ⊂ A[L,M,b].

Aim: Provide a lower estimate for Hε(F | L1(R)).
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Lower estimate for Hε(F | L1(R))

For any ι, ῑ ∈ {0, 1}n, one has

‖Fι −Fῑ‖L1 ≤ 2hL
n d(ι, ῑ).

where d(ι, ι)
.

= Card {k ∈ {1, . . . , n} | ιk 6= ιk} It follows that

‖Fι −Fῑ‖L1 ≤ ε ⇐⇒ d(ι, ῑ) ≤ nε
2hL

.

Therefore, for any fixed ῑ ∈ {0, 1}n, let Cε be the number of Fι such that
‖Fι −Fῑ‖L1 ≤ ε (such a number is independent of ῑ ).

We have

Cε =

b nε
2hL c∑
`=0

(
n
`

)
=

1
2n P

(
X1 + ...+ Xn ≤

⌊ nε
2hL

⌋)
where X1, . . . ,Xn are indep. random variables with Bernoulli distribution
P(Xi = 0) = P(Xi = 1) = 1

2 .
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Therefore, for any fixed ῑ ∈ {0, 1}n, let Cε be the number of Fι such that
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2hL

.
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‖Fι −Fῑ‖L1 ≤ ε (such a number is independent of ῑ ).
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Lower estimate for Hε(F | L1(R)) . . . continued

By Hoeffding’s inequality, one obtains

Cε ≤ 2n exp
(
−n

2

(
1− ε

Lh

)2)
≤
max
h,n

2n exp
(
−1
ε

4bL2

27

)
.

(taking h = 2bL
n , n = 2bL2

3ε )

Notice: any element of an ε-cover of F contains at most C2ε functions of F .

Card{F} = 2n =⇒ Nε(F)
.

=
[
minimal # of sets in a ε-cover of F

]
satisfies

Nε(F) ≥ 2n

C2ε
≥ exp

(
1
ε
· 2bL2

27

)

=⇒ Hε(F | L1(R)) ≥ 1
ε
· 2bL2

27ln(2)
.
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Lower compactness estimates

F ⊂ A[LT ,h,bT ]

=⇒ Hε(A[LT ,h,bT ] | L1(R)) ≥ Hε(F | L1(R)) ≥ 1
ε
· 2bL2

27ln(2)

A[LT ,h,bT ] ⊂ ST (C[L,m,M]), with

LT
.

= L− αTh, bT
.

=
1
αT

, α
.

= sup|u|≤h|f ′′(u)|,

=⇒ Hε(ST (C[L,m,M] | L1(R))) ≥ 1
ε
· C · L2

T
.
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Lower compactness estimates for systems

Consider a strictly hyperbolic system of conservation laws

∂tu + ∂x f (u) = 0, x ∈ R, u ∈ Ω ⊂ RN

(λ1(u) < · · · < λN(u) eigenvalues of Df (u) with eigenvectors ri )

F. A., O. Glass and K. T. Nguyen (2013)

Given any L,m,M > 0, consider

Cδ0
[L,m,M]

.
=
{

u0 ∈ L1(R) | Supp(u0) ⊂ [−L, L], ‖u0‖L1 ≤ m, ‖u0‖L∞ ≤ M,

Tot.Var.{u0} < δ0

}
, δ0 � 1.

For any T > 0 and for ε > 0 sufficiently small, one has

Hε(ST (Cδ0
[L,m,M] | L

1(R))) ≥ 1
ε
· C · L2 N2

T

for some constant C > 0 (depending on ∇λi , Dri and δ0)

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq’ns



Introduction
Compactness estimates for conservation laws

Compactness estimates for HJ equations

Upper estimate for conservation laws
Lower estimates for conservation laws

Lower compactness estimates for systems

Consider a strictly hyperbolic system of conservation laws

∂tu + ∂x f (u) = 0, x ∈ R, u ∈ Ω ⊂ RN

(λ1(u) < · · · < λN(u) eigenvalues of Df (u) with eigenvectors ri )

F. A., O. Glass and K. T. Nguyen (2013)

Given any L,m,M > 0, consider

Cδ0
[L,m,M]

.
=
{

u0 ∈ L1(R) | Supp(u0) ⊂ [−L, L], ‖u0‖L1 ≤ m, ‖u0‖L∞ ≤ M,

Tot.Var.{u0} < δ0

}
, δ0 � 1.

For any T > 0 and for ε > 0 sufficiently small, one has

Hε(ST (Cδ0
[L,m,M] | L

1(R))) ≥ 1
ε
· C · L2 N2

T

for some constant C > 0 (depending on ∇λi , Dri and δ0)

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq’ns



Introduction
Compactness estimates for conservation laws
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Upper estimate for conservation laws
Lower estimates for conservation laws

Outline of the proof

1. Let s 7→ Ri (s) denote the integral curve of the i-th eigenvector ri , starting
at the origin.
Consider a family of profiles of i-simple waves {φιi }ι defined as
parametrizations

s 7→ φιi (s)
.

= Ri (βι(s))

of Ri through a suitable class of piecewise affine, compactly supported
functions {βι}ι.

2. Given any L,m,M,T > 0, for h sufficiently small, and for any profile
of superposition φι1,...,ιN of simple waves φι11 , . . . , φ

ιN
N ,

with |βι| ≤ h, |βι′| ≤ bT , for all ι = ι1, . . . , ιN , one has

φι1,...,ιN ∈ ST (C[L,m,M])
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Upper estimate for conservation laws
Lower estimates for conservation laws

Outline of the proof . . . continued

3. Consider a two-parameter class F of profiles of superposition φι1,...,ιN
of simple waves associated to a two-parameter class B of N-tuples of
piecewise affine, compactly supported functions (βι1 , . . . , βιN ) so that

F ⊂ ST (C[L,m,M])

4. Observe that, setting

CFε
.

= [max # elements in F contained in a ball of radius ε w.r.t. L1-distance]

CB2ε
.

= [max # elements in B contained in a ball of radius 2ε w.r.t. L1-distance]

one has
CFε ≤ CB2ε.

5. Provide an optimal (w.r.t. the parameters) estimate of CB2ε by the same
combinatorial arguments used for scalar conservation laws.
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Upper estimate for conservation laws
Lower estimates for conservation laws

Compactness estimates for Temple systems

Consider a strictly hyperbolic system of conservation laws of Temple class:

- endowed with a coordinates system w = (w1, . . . ,wN) of Riemann
invariants wi = wi (u) associated to each characteristic field ri ;

- the level sets
{

u ∈ Ω; wi (u) = constant
}

of every Riemann invariant
are hyperplanes;

with all characteristic family genuinely nonlinear.

F. A., O. Glass and K. T. Nguyen (2013)

Given any L,m,M > 0, consider

C[L,m,M]
.

=
{

u0 ∈ L1(R) | Supp(u0) ⊂ [−L, L], ‖u0‖L1 ≤ m, ‖u0‖L∞ ≤ M
}
.

For any T > 0 and for ε > 0 sufficiently small, one has

Hε(ST (C[L,m,M] | L1(R))) ≤ 1
ε
· C · L2 N2

T

for some constant C > 0 (depending on ∇λi , Dri )
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Compactness estimates for HJ equations

Upper estimates
Lower estimates

From conservation laws to HJ equations

Given u(t , x) entropy weak solution of the conservation law

∂tu + ∂x f (u) = 0, x ∈ R,

the function

v(t , x)
.

=

∫ x

−∞
u(t , z)dz

is a viscosity solution of the Hamilton-Jacobi equation

∂tv + f (∂x v) = 0, x ∈ R.

Notice: quantitative compactness estimates for conservation laws
w.r.t. L1-topology plus Poincaré inequality =⇒ quantitative
compactness estimates for H-J w.r.t. W 1,1-topology in 1-dim case.
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Upper estimates
Lower estimates

General setting

Consider a HJ equation
ut (t , x) + H(∇x u(t , x)) = 0,

u(0, ·) = u0(·) ∈ Lip(Rn)
(4)

where u : [0,+∞[×Rn → R and H ∈ C2(Rn) satisfies:

(UC) uniform convexity: D2H(p) ≥ α · In, α > 0.

For every u0(·) ∈ Lip(Rn), (4) admits a unique viscosity solution u given by
Hopf’s formula

u(t , x) = min
y∈Rn

{
t · L

(x − y
t

)
+ u0(y)

}
.

(L(q) = maxp∈Rn{< p, q > −H(p)} Legendre transform of H)

One has that

u(t , ·) is Lipschitz,

u(t , ·) is semiconcave with semiconcavity constant 1
αt , i.e.,

u(t , x)− (1/2αt) · |x |2 is concave.
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Compactness estimates for HJ equations

Upper estimates
Lower estimates

Hopf-Lax semigroup

The H-J eqn generates a semigroup

St : Lip(Rn)→ Lip(Rn), t > 0,

which associates to every given initial data u0 ∈ Lip(Rn), the unique viscosity
solution u(t , x) of (1), with initial datum u(0, ·) = u0

St (u0)
.

= u(t , ·).

St : Lip(Rn)→ Lip(Rn) is a compact operator in W1,1
loc (Rn) for every t > 0.

−−− ∗ −−−−−− ∗ −−−

Problem: Given L,M,T > 0, consider

C[L,M]
.

=
{

u ∈ Lip(Rn) : supp(u) ⊂ [−L, L]n , Lip[u] 6 M
}
.

Provide upper and lower estimates on

Hε(ST (C[L,M]) + T · H(0) |W1,1
loc (Rn)).

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq’ns



Introduction
Compactness estimates for conservation laws

Compactness estimates for HJ equations

Upper estimates
Lower estimates

Hopf-Lax semigroup

The H-J eqn generates a semigroup

St : Lip(Rn)→ Lip(Rn), t > 0,

which associates to every given initial data u0 ∈ Lip(Rn), the unique viscosity
solution u(t , x) of (1), with initial datum u(0, ·) = u0

St (u0)
.

= u(t , ·).

St : Lip(Rn)→ Lip(Rn) is a compact operator in W1,1
loc (Rn) for every t > 0.

−−− ∗ −−−−−− ∗ −−−

Problem: Given L,M,T > 0, consider

C[L,M]
.

=
{

u ∈ Lip(Rn) : supp(u) ⊂ [−L, L]n , Lip[u] 6 M
}
.

Provide upper and lower estimates on

Hε(ST (C[L,M]) + T · H(0) |W1,1
loc (Rn)).

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq’ns



Introduction
Compactness estimates for conservation laws

Compactness estimates for HJ equations

Upper estimates
Lower estimates

Hopf-Lax semigroup

The H-J eqn generates a semigroup

St : Lip(Rn)→ Lip(Rn), t > 0,

which associates to every given initial data u0 ∈ Lip(Rn), the unique viscosity
solution u(t , x) of (1), with initial datum u(0, ·) = u0

St (u0)
.

= u(t , ·).

St : Lip(Rn)→ Lip(Rn) is a compact operator in W1,1
loc (Rn) for every t > 0.

−−− ∗ −−−−−− ∗ −−−

Problem: Given L,M,T > 0, consider

C[L,M]
.

=
{

u ∈ Lip(Rn) : supp(u) ⊂ [−L, L]n , Lip[u] 6 M
}
.

Provide upper and lower estimates on

Hε(ST (C[L,M]) + T · H(0) |W1,1
loc (Rn)).

Fabio Ancona Quantitative compactness estimates for conservation laws & HJ eq’ns



Introduction
Compactness estimates for conservation laws

Compactness estimates for HJ equations

Upper estimates
Lower estimates

Proposition

Given L,M > 0, consider

C[L,M]
.

=
{

u ∈ Lip(Rn) : supp(u) ⊂ [−L, L]n , Lip[u] 6 M
}
.

For every T > 0 and every u ∈ C[L,M], there holds
1 Lip[ST (u)] 6 M
2 spt

(
ST (u) + T · H(0)

)
⊂ [−LT , LT ]n, LT

.
= L + T · sup

|p|≤M
|∇H(p)|

-

6

-

u

-

?

ST (u)

x

0

L LT

−T · H(0)
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Kolmogorov entropy measure of compactness
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Lower estimates

Upper estimates

F.A., P. Cannarsa, K.T. Nguyen (2013)

Let H satisfy (UC) and ∇H(0) = 0. For any T > 0, and for ε > 0 sufficiently
small, one has

Hε(ST (C[L,M]) + T · H(0) |W 1,1(Rn)) ≤ Γ+ · 1
εn

for some constant Γ+ > 0 depending on L,M.

Main steps of the proof:

1. ST (C[L,M]) + T · H(0) ⊂ SC[ 1
αT ,LT ,M] where LT

.
= L + sup|p|≤M |∇H(p)|

and
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Upper estimates . . . continued

3. relying on a Poincaré ineq. and on fine properties of monotone multif.
derive an upper bound for the ε-entropy of a class of bounded,
monotone decreasing multifunctions, with uniformly bounded total
variation, defined on a bounded domain.

4. relying on 2.-3. derive an upper bound for the ε-entropy of semiconcave
functions

Hε(SC[K ,L,M] |W 1,1(Rn)) ≤ Γ+
1 ·

1
εn

for some constant Γ+
1 > 0 depending on K , L,M.
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F.A., P. Cannarsa, K.T. Nguyen (2013)

Let H satisfy (UC) and ∇H(0) = 0. For any T > 0, and for ε > 0 sufficiently
small, one has

Hε(ST (C[L,M]) + T · H(0) |W 1,1(Rn)) ≥ Γ− · 1
εn

for some constant Γ− > 0 depending on L,M.

Therefore,

Hε(ST (C[L,M]) + T · H(0) |W 1,1(Rn)) ≈ 1
εn .
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Main steps toward lower estimates on Hε(ST (C[L,M]) |W
1,1
loc (R

n))

1. Controllability type result.
Introduce a suitable parametrized class U of smooth functions defined
as combinations of suitable bump functions, and show that any element
of such a class, up to a translation by a fixed map ψ, can be obtained, at
any given time T , as the value u(T , ·) of a viscosity solution with initial
data in C[L,M].

2. Combinatorial computation.
Provide an optimal (w.r.t. the parameters) estimate of the maximum
number of functions in such a class U that can be contained in a ball
of radius 2ε (w.r.t. W1,1 distance).
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Reachability of semiconcave functions

Proposition 1

Let H satisfy (UC) and ∇H(0) = 0. Given any K , L,M > 0 and T > 0 such
that

K ≤ 1
4‖D2H(0)‖ · T

for m sufficiently small one has

SC[K ,L/2,m] − T · H(0) ⊂ ST (C[L,M]).

Goal: for
uT ∈ SC[K ,L/2,m] − T · H(0),
we find u0 ∈ C[L,M] such that

ST (u0) = uT .
0

T

U_0

U_T
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Backward construction

Reversing the direction of time

w0(x) := uT (−x), w(t , x) = St (w0)(x).

Set
u(t , x) = −w(T − t ,−x), (t , x) ∈ [0,T ]× Rn.

Observe that

u(T , ·) = uT (·),
u0(·) := u(0, ·) ∈ C[L/2,M],

For almost every (t , x) ∈ [0,T ]× Rn,

ut (t , x) + H(∇x u(t , x)) = 0.

=⇒ to prove uT ∈ ST (C[L,M]), we need to show that u(t , x) is a viscosity
solution.
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AIM: show that w(t , x) is smooth in ]0,T [×Rn.
Since w(0, ·) = −uT (−·) is semiconvex with semiconvexity constant
−K ≥ − 1

4‖D2H(0)‖·T , if Lip[w(0, ·)] is sufficiently small, one has

w(t , ·) is semiconvex ∀ t ≤ T

Dw(T,.)Dw(0,.)

=⇒ w(t , ·) is both semiconcave and semiconvex, hence w(t) ∈ C1

Therefore, u is a classical solution of H-J equation in [0,T ]× Rn and hence
it is a viscosity solution. It implies that

uT = ST (u0).
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Lower estimates of Hε(SC[K ,L,M] |W1,1(Rn))

Proposition 2

Given K , L,M > 0, for ε > 0, it holds

Hε(SC[K ,L,M] |W1,1(Rn)) ≥ Γ− · 1
εn .

Sketch of proof (n = 2):

Given N ∈ Z+, we divide [0, L]2

into N2 squares

[0, L]2 =
⋃

ι∈{1,...,N}2

�ι.

A bump function b : �→ R such
that

Lip[b] ≤ KL
12N , ‖b‖W1,1 ≤ C

N3

b,−b is semiconcave with
constant K .
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A class of smooth functions

Let
∆N :=

{
δ = (δι)ι∈{1,...,N}2

∣∣∣ δι ∈ {−1, 1}
}

A class of smooth functions

UN :=
{

uδ =
∑

ι∈{1,...,N}2

δι · bιn
∣∣∣ δ ∈ ∆N

}
.

For N sufficiently large, one has that

UN ⊂ SC[K ,L,M].

On the other hand, by choosing N ≈ 1
ε

we have

Hε(UN |W1,1(R2)) ≥ Γ− · 1
ε2 .

Therefore,

Hε(SC[K ,L,M] |W1,1(R2)) ≥ Γ− · 1
ε2 .
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Viscosity solutions

A function u ∈ C
(
[0,T ]× Rn) is a viscosity solution of

ut + H
(
t , x ,∇u

)
= 0 in ]; [0,T ]× Rn

if for every (t , x) ∈ (0,T )× Rn and every φ ∈ C1((0,T )× Rn)
u − φ has a local maximum at (t , x) ⇒ φt (t , x) + H

(
t , x ,∇φ(t , x)

)
60

u − φ has a local minimum at (t , x) ⇒ φt (t , x) + H
(
t , x ,∇φ(t , x)

)
>0

-

6

r
r

r6 6

>

>
u

φ
φ

φ
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